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Abstract
A recently developed recursive algorithm for the direct recovery of the electron
density of a surface unit cell from scattered x-ray intensities is adapted to crystal
surfaces that may consist of mutually rotated domains. We examine the cases
of both mutually coherent scattering from the domains and the more common
case of mutually incoherent scattering. In each case we test the algorithms on
simulated data calculated from a standard surface x-ray diffraction computer
program. In both cases the iterative algorithm depends on satisfying data
constraints in reciprocal space and non-negativity constraints on the electron
density in real space.

1. Introduction

There has been much recent interest in developing direct methods for surface crystallography
to supplement the trial-and-error approach of fitting of guessed structures to experimental data.
Amongst the most prominent of these methods are those based on the analysis of diffraction
patterns formed by the emission of electrons from individual atoms in a surface unit cell, for
example by the process of photoemission [1]. The measurable diffraction pattern formed by
the interference between the electrons following a direct path from the source to the detector,
and those which first scatter from near-neighbour atoms may be interpreted in some sense as
a hologram. A reconstruction algorithm that mimics the process of back-propagation [2] is
able to trace these scattered waves back to the positions of the scatterer atoms relative to the
emitters, and thus to determine the relative positions of the emitters and nearby scatterers.
Although there have been several important successes of such methods, they suffer from one
fundamental disadvantage: due to the inverse-square decay with distance of the intensity of
the emitted wave, such methods tend to be able to reconstruct the positions of atoms only in
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a rather localized cluster around the emitter. Thus the information gleaned by such a method
may not be sufficient to determine the structure of a large surface unit cell.

An adaptation of the holographic idea has been suggested for the direct determination of
the structure of an entire large surface unit cell from conventional diffraction patterns from
crystal surfaces [3, 4]. The idea is to regard the known part of the amplitude associated with
scattering from the substrate as a reference wave, and to use this information to recover the
amplitude and phase of the object wave that will allow the determination of the structure of the
surface layers. In this sense the method bears some similarity to those for structure completion
recently proposed for protein crystallography [5, 6].

The idea is to recover the electron distribution in the surface unit cell by alternatively
constraining the solution in real and reciprocal space. In surface x-ray diffraction (SXRD), the
solution has to be consistent with observed diffracted amplitudes in reciprocal space, while
maintaining non-negativity of the electron density in real space. In this respect the method is
similar to the so-called input–output phasing algorithms developed by Fienup [7,8] for related
problems in optics and astronomy. The added feature is that it incorporates information on the
contribution to the diffraction pattern of the scattered wave from the known bulk crystal [4].
Our previous work has addressed the problem of the recovery of the electron density of a
single repeated unit cell, whether of three-dimensional (3D) periodicity, as in the case of bulk
crystals [6], or of two-dimensional (2D) periodicity in the case of crystal surfaces [3, 4].

In the case of surface crystallography, it is common for the observed symmetry of the
diffraction pattern to be higher than that of a unit cell of the surface. This can arise due to the
presence of mutually rotated domains. For example, two domains consisting of rectangular
unit cells (of twofold rotational symmetry), rotated with respect to each other by 90◦ can give
rise to a diffraction pattern of fourfold rotation symmetry.

In such situations, we can identify two distinct cases: that of mutually coherent scattering
from each set of domains and that of incoherent scattering. The former would arise if the
relevant coherence length of the radiation were larger than the width of a typical domain; the
latter if that coherence length was smaller. It is believed that incoherently scattering domains
are more common in SXRD, but in this paper we propose algorithms to cover both cases.
All tests of our proposed algorithms will be performed on SXRD intensities simulated by a
standard and realistic computer program [9].

2. Diffraction from a single-domain surface

We will begin with a review of SXRD from a crystal surface consisting of a single domain. In
this case, the detected intensity in an SXRD experiment may be written as

Iq = |Fq|2 (1)

where Fq is the structure factor of a unit cell of the entire structure (surface plus bulk), where
the scattering vector q is defined as the difference between the wavevectors of the incident and
scattered x-rays. In SXRD this may be taken to be

q = Ha∗ + Kb∗ + Lc∗ (2)

where H , K , and L are Miller indices, a∗ and b∗ are reciprocal-lattice vectors parallel to the
surface, and c∗ is one perpendicular to the surface. The periodicity of a crystal surface restricts
H and K to integer values. The breaking of the periodicity perpendicular to the surface due
to the crystal truncation allows a continuous variation of L [3].

In general, the structure factor Fq may be written as the sum of two contributions: Rq due
to scattering from the bulk, and Oq from the surface layers. Thus,

Fq = Rq + Oq. (3)



Surface x-ray crystallography with alternating constraints in real and reciprocal space 4089

The surface contribution, Oq, may be written as the Fourier transform of the electron
distribution {uj }, i.e.,

Oq =
∑

j

uj exp(iq · rj ) (4)

where {uj } is defined on a uniformly distributed grid of voxels at positions rj within the surface
unit cell. The structure of the surface can usually be deduced if it is possible to recover the
distribution, {uj }, of surface electrons.

It is important to realize that in surface crystallography the 2D unit cell of the surface
atomic layers may be different (usually larger) than that of the bulk layers. Defining the
reciprocal-lattice vectors a∗ and b∗ with respect to the surface unit cell therefore, some of the
reciprocal-lattice rods (the so-called superstructure rods) corresponding to particular integer
values of H and K exist solely due to scattering from the surface layers. Consequently, for
those rods, Rq = 0, and the structure factor Fq has only contributions Oq from the surface.
Other reciprocal-lattice rods corresponding to 2D reciprocal-lattice vectors of the bulk, and
known as crystal truncation rods (CTRs), have contributions from both the bulk and surface
regions according to equation (3).

If the set of amplitudes {Oq} may be found, the electron distribution {uj } follows by the
inverse Fourier transform of (4). The recovery of {Oq} from the set {Iq} of measured intensities
and the diffraction amplitudes {Rq} from the known part of the structure (the bulk) is akin to
the recovery of an object wave from a hologram using knowledge of a reference wave. The so-
called holographic algorithm developed by Szöke and co-workers [5,10] seeks to find {uj } by
solving the simultaneous equations relating that distribution to {Iq} and {Rq}. In the following
we will describe alternative algorithms for recovering {uj } from the same set of data, by using
a knowledge of the reference wave {Rq} to find the phase of the amplitudes {|Fq|} accessible
from the experiment.

3. Difference Fourier synthesis

If we consider first only the case of a surface where the 2D surface periodicity was the same
as that of the bulk, all the data would consist of CTRs, and in principle the unknown (surface)
electron distribution may be found from the inverse Fourier transform:

uj = 1

N

∑
q

{Fq − Rq} exp(−iq · rj ) (5)

(where N is the number of voxels per unit cell) provided both the amplitudes and phases of the
structure factors {Fq} were known. The difficulty, of course, is that, although the amplitudes
of {Fq} are directly measurable from the experimental data, their phases are not.

The earliest method for estimating such unknown phases was the unweighted difference
Fourier method [11], which approximates the phases of the structure factors by those of the
known part of the structure, i.e. it estimates the electron distribution of the unknown part (in
our case the surface) by

u
(UDF)
j = 1

N

∑
q

[|Fq| exp{iφ(R)
q } − Rq

]
exp(−iq · rj ) (6)

where

φ(R)
q = arg[Rq] (7)

is the phase of Rq, which is known since it is derived from a calculation of Rq from the known
part of the structure (the bulk).



4090 D K Saldin et al

In the analogous structure completion problem in protein crystallography, a refinement
of the above formula, termed a weighted difference Fourier synthesis, has been proposed by
Sim [12, 13]. Read [14] has subsequently proposed a further refinement which can take into
account possible sources of uncertainty in the coordinates of a partially known structure.

Of course, such difference Fourier methods are not able to deal with the data on
superstructure rods, since the latter have no contribution from the known bulk. Conversely, an
alternative direct method proposed recently for SXRD [15] exploits data in only superstructure
rods, and not CTRs. The iterative methods for structure completion that we now describe
operate on data from both CTRs and superstructure rods [3,16]. Consequently they are capable
not just of analysing diffraction intensities from reconstructed surfaces with 2D unit cells larger
than their bulk counterparts (and which hence give rise to superstructure diffraction rods), but
even of analysing surfaces for which the 2D unit cell is identical in size to that of the bulk, and
which do not generate superstructure rods. These methods combine experimental information
in reciprocal space with the known constraint that the electron density in real space must be
both real and positive.

4. Recovery of the entire contents of a unit cell by real-space imposition of
non-negativity

The idea of an input–output feedback loop for phasing that iteratively satisfies conditions in
real and reciprocal space has been suggested by Fienup [7] for problems where a positive-
definite distribution is sought, and where only the amplitudes of the Fourier transforms of that
quantity are accessible by experiment. The aim is to obtain increasingly better estimates of
the phases of these Fourier transforms by iteratively satisfying the reciprocal-space constraints
and the real-space requirement of the positivity of the sought distribution. Improvement of
phase quality is directly correlated with an improved estimate of that distribution. We propose
below a modification of such an algorithm for the structure completion problem.

We may describe such an algorithm as performing ‘recovery of the entire contents of a
unit cell by real-space imposition of non-negativity’ (or RECURSION, for short). In common
with all crystallographic methods, of course, reciprocal-space amplitudes are constrained to
measured values. In a case where all unit cells are identical, and of the same orientation (the
single-domain case), a flow chart of such an algorithm for the structure completion problem is
given in figure 1. Starting at the top left-hand corner of the flow chart, suppose {u(n)

j } represents
the estimate of the unknown surface electron density at the nth iteration. Proceeding to the top
entry of the right-hand box, we take the Fourier transform (FTq)

O(n)
q =

∑
j

u
(n)
j exp(iq · rj ) (8)

of this distribution by a fast-Fourier-transform (FFT) algorithm.
The dimensions of the parallelepiped reciprocal-space array of {O(n)

q } (and consequently

the real-space grid spacing of {u(n)
j }) are chosen such that all the values of the wavevector

difference q belonging to the set M of measured structure factors |Fg| may be embedded
within it. The set of elements in the same reciprocal-space array not belonging to M may be
termed the unmeasured set U .

The next step is the evaluation of the arguments of the Fourier coefficients Rq + O(n)
q for

all q ∈ M and the assignment of their arguments to the phases

φ(n)
q = arg[Rq + O(n)

q ] ∀q ∈ M. (9)
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Oq
(n)=FTq{uj

(n)}{uj
(n)}

{tj
(n)}

uj
(n+1)=  tj

(n) if tj
(n)>0

0    if tj
(n)<0

n⇒n+1

tj
(n)=FT-1

j{Tq∈M
(n)+ Oq∈U

(n)}

φq
(n)=arg[Rq+Oq

(n)], ∀q∈M

Tq
(n)=|Fq|exp[i φq

(n)]-Rq, ∀q∈M

Figure 1. The flow chart of the RECURSION algorithm that converts an input real-space
distribution {u(n)

j } to an output distribution {t (n)
j } by constraining the Fourier-transformed quantities

to experimental amplitude data. The new input real-space distribution {u(n+1)
j } for the next iteration

of the feedback loop is calculated from the output distribution at the previous iteration by object-
domain operations that ensure that this is the closest possible to the output that satisfies the condition
of non-negativity.

The ‘target’ Fourier coefficients T (n)
q are then computed from the formula

T (n)
q = |Fq| exp[φ(n)

q ] − Rq ∀q ∈ M. (10)

The inverse Fourier transform

t
(n)
j = 1

N

∑
q

[T (n)
q∈M + O

(n)
q∈U ] exp(−iq · rj ) (11)

at the last step within the right-hand box gives rise to the output electron distribution, {t (n)
j }.

Thus, in such a scheme, the boxes on the right of the flow chart transform an input electron
distribution {u(n)

j } to an output one {t (n)
j } at iteration n by combining experimental information

about the measured amplitudes |Fq| with the estimates of the phases, φ(n)
q , calculated from

the current input electron distribution [7]. The boxes on the left of the flow chart describe the
steps in the transformation of the input, {u(n)

j }, and output, {t (n)
j }, at the nth iteration to the

input {u(n+1)
j } at the next iteration. These steps are known as the object-domain operations, and

may be written in the general form u
(n+1)
j = f (u

(n)
j , t

(n)
j ). Fienup [8] suggested four specific

prescriptions. Three of them involve a feedback parameter β (in analogy with negative-
feedback problems in electronics) whose value is chosen by trial and error to lie somewhere
in the range between 0 and 1. The most straightforward is the so-called error-reduction
prescription:

u
(n+1)
j =

{
t
(n)
j if t

(n)
j > 0

0 otherwise
(12)

which has no adjustable parameters, and which takes as its next input the non-negative
distribution that is closest to the output from the previous iteration.

In the RECURSION algorithm that we use for calculations reported in this paper, we
have used solely this conceptually simplest error-reduction prescription. A convenient starting
electron distribution {u(0)

j } is a uniform one normalized to the total number of electrons believed
to be present in the unknown part of the structure. Its Fourier transform will give O(0)

q = 0,

∀q 
= 0. Also, since R0 and O
(0)

0 are both real, it follows from (9) that

arg[T (0)
q ] = arg[Rq] ∀q ∈ M (13)
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Rq

T q
(0)

T q
(n)

O q
(n)|Fq|

φ q
(n)

Figure 2. The amplitude–phase diagram indicating the relationships amongst the various
component structure factors of scattering vector q. The circle has a radius of |Fq |, the measured
amplitude of Bragg reflection q. Rq represents the structure factor of the known bulk unit cell.
This is known in both amplitude (length) and phase (angular separation from the dashed line). The
(unweighted) difference Fourier estimate of the structure factor of the unknown part of the structure
(the surface) is represented by the vector T

(0)
q , which has the same phase (direction) as Rq . O

(n)
q is

the estimate of the same structure factor at the nth iteration (n > 0) of the RECURSION algorithm,
formed from the input distribution {u(n)

j } of the surface electron density. Since the end of the

vector sum of Rq and O
(n)
q will not in general lie on the circumference of the circle, the length of

this vector is adjusted to the circle radius. The target structure factor T
(n)
q of the surface is then

constructed such that when added vectorially to Rq it is equal in both amplitude |Fq | and phase

(φ(n)
q ) to the new estimate F

(n)
q of the structure factor of the entire structure (bulk and surface). The

Fourier transform of the target structure factors {T (n)
q } forms the output distribution {t (n)

j } at the

nth iteration. The object-domain operations then construct a new input distribution {u(n+1)
j } and

the process is repeated until O
(n+1)
q and T

(n+1)
q (or {u(n+1)

j } and {u(n)
j }) converge.

and hence from (10) that

|T (0)
q | = |Fq| − |Rq|. (14)

The progress of successive estimates of the relevant Fourier coefficients of a particular
reciprocal-space scattering vector q ∈ M may be visualized from figure 2. The distance from
the centre of the circle to its perimeter represents the magnitude |Fq| of the measured structure
factor of the entire sample (bulk plus surface). Rq is a fixed vector in this amplitude–phase
diagram, representing the bulk structure factor that is known in both amplitude and phase. The
surface contribution to the total structure factor must join the end of the vector Rq to the circle
perimeter. The problem is that since the phase of this vector is initially unknown, there are an
infinite number of such possible vectors. The first (unweighted difference Fourier) estimate,
T (0)

q , of this surface structure factor takes this phase to be equal to that, Rq, of the bulk in
accordance with (13), and thus T (0)

q is taken to be parallel to Rq, as shown in figure 2.
The inverse Fourier transform of the surface structure factors {T (0)

q } produces the initial

output real-space distribution {t (0)
j }. After an application of the object-domain operations to

produce the new input distribution {u(n)
j } (n > 0), the Fourier transform of the latter gives the

surface structure factor estimates {O(n)
q }. The phase φ(n)

q is defined by the vector sum of Rq

and O(n)
q as shown in the figure. Since, in general, the magnitude of this vector sum will not

be equal to |Fq|, this vector is extended (or contracted) without change in direction until it
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Figure 3. The top view of two mutually rotated domains (left- and right-hand panels) of the surface
dimer model of Ge(001)-(2×1). The positions of the dimer atoms relative to the (2×2) unit cells
marked in red in the models of both domains are shown in the central panel. The red dots mark
the positions of the dimer atoms from the domain represented by the left-hand panel, and the blue
dots those from that represented by the right-hand one.

touches the circle perimeter. The vector joining the end of the bulk structure factor Rq and
that point on the circle’s perimeter is now defined as the new estimate T (n)

q .
After several iterations, as convergence is approached, O(n)

q and T (n)
q , ∀q ∈ M tend to

merge. The resulting common phase φ(n)
q is the final estimate of the phase of the measured

structure factor Fq. When supplemented by the unmeasured Fourier coefficients O(n)
q , ∀q ∈ U ,

the inverse Fourier transform of the combined set gives the final estimate of the surface electron
distribution as that to which both {t (n)

j } and {u(n)
j } eventually converge.

We had earlier [4] described applications to SXRD of this algorithm for the recovery of the
electron densities of single-domain surfaces. In the following we will show how the algorithm
may be adapted to the case of mixed domains under conditions where the scattering amplitudes
are added (a) coherently and (b) incoherently.

5. Two coherently scattering domains

Consider a surface consisting of equal proportions of two identical but mutually rotated domains
of sizes smaller than the coherence length of the x-rays in the plane parallel to the surface.
The example that we have chosen is a hypothetical parallel dimer reconstruction of a Ge(001)-
(2 × 1) surface. A top view of the model of one of the domains is illustrated in the left-hand
panel of figure 3. Outlined in red is a (2 × 2) unit cell constructed of two neighbouring (2 × 1)
cells of the same orientation, separated by the dashed red line. The structure factor of this
(2 × 2) unit cell may be calculated using (8) with {uj } now defined as a discrete representation
of the surface electron density within the (2 × 2) unit cell, and the scattering vector defined
by (2), with a∗ and b∗ taken as the 2D reciprocal-lattice vectors defined by the above (2 × 2)
surface unit cell, and c∗ a reciprocal-lattice vector perpendicular to the surface of magnitude
equal to 2π times the reciprocal of the bulk repeat distance perpendicular to the surface.

As noted earlier, the 2D periodicity parallel to the surface gives rise to scattered intensity
only for scattering vectors q with integer values of the Miller indices H and K . However,
the lack of a true periodicity in a direction perpendicular to the surface gives rise to scattered
intensities over a continuous variation of the third Miller index L. Indeed, the fact that the
bulk unit cell corresponds to a (1×1) periodicity allows scattering contributions from the bulk
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Figure 4. A cut through reciprocal space parallel to the surface intersecting the diffraction rods
from a mixture of two mutually rotated Ge(001)-(2 × 1) domains. Marked by black asterisks
surrounded by circles are the CTRs with contributions from both substrate and surface scattering.
The red asterisks mark the positions of the superstructure rods from the left-hand model domain
of figure 3, while the green asterisks mark those from the right-hand model domain of the same
figure.

(the CTRs) only into reciprocal-lattice rods with even values of both H and K , as indicated in
figure 4. The latter is a schematic diagram of a cut parallel to the surface through the reciprocal-
lattice rods of a single Brillouin zone corresponding to the bulk 2D periodicity. The (2 × 1)
periodicity of the surface unit cell of this domain gives rise to superstructure contributions not
only to these CTRs, but also to rods of all integer values of H (but still just even values of K).
Within the first Brillouin zone above, two extra rods are produced with (HK) values of (12)
and (10), as indicated in red in figure 4.

For the purposes of our test, we assume all atoms below the surface dimer layer to be
undisplaced from their bulk positions, so the surface electron density from a unit cell of this
domain may be assumed to be due to just the four yellow dimer atoms forming a rectangular
pattern within the red (2 × 2) surface unit cell in the left-hand column of figure 3.

The domain that is rotated by 90◦ relative to this one will possess an identical (2 × 2)
surface unit cell, except rotated by the same angle, as shown in the right-hand panel of figure 3.
The structure factors F ′

q of the entire (bulk plus surface) rotated unit cell outlined in red in the
right-hand column of figure 3 are equal to those, Fq′ , of the (2 × 2) unit cell of the left-hand
column of figure 3, where

q′ = Ka∗ − Hb∗ + Lc∗. (15)

Thus on the assumption of equal parts of two mutually coherent rotated domains, the total
complex amplitude associated with a given reciprocal-lattice rod will be

Fq = Rq + Oq (16)

for the CTRs, and

Fq = Oq (17)

for the superstructure rods, where Fq = (Fq + Fq′)/2, Rq = (Rq + Rq′)/2, and Oq =
(Oq + Oq′)/2. Since the set of bulk structure factors {Rq} may be calculated in their entirety
(amplitude and phase) from a knowledge of the bulk structure, and the amplitudes {|Fq|} may
be measured by experiment, exactly the same algorithm as described in section 4 may be used
to find the electron density corresponding to the Fourier transform of Oq. From the definition
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of Oq above, it is clear that this electron density must be an average of the electron density
of the two mutually rotated (2 × 2) surface unit cells highlighted in figure 3. The average
electron density of these two surface domains must therefore arise from the eight dimer atoms
indicated in the central panel in figure 3. In this panel the red dots indicate surface dimer atoms
from the marked (2 × 2) unit cell in the domain represented by the left-hand panel of figure 3,
while the blue dots represent those from the marked unit cell of the rotated domain of the
right-hand panel of the same figure. In reciprocal space, the rotated domain would generate
(for example) the superstructure rods characterized by (HK) combinations of (01) and (21)

(marked in green in figure 4), and will make further contributions to the CTRs.
Accordingly, the RECURSION algorithm was run for simulated diffraction data for two

such mutually rotated and coherently scattering domains, with the calligraphic quantities Fq,
Rq, and Oq substituting for Fq, Rq, and Oq in equations (9) through (14). We also need a
redefined target function Tq to substitute for Tq, where

T (n)
q = {|Fq| exp(iφ(n)

q ) − Rq} (18)

where φ(n)
q is now defined by

φ(n)
q = arg[Rq + O(n)

q ] ∀q ∈ M. (19)

As in the case of the single-domain (2 × 2) reconstruction of GaAs(111), the first step
was to run the algorithm with just the data from the CTRs. A set of isosurfaces of the input
electron distribution {u(n)

j } for n = 1 within our notional (2 × 2) unit cell after a single
pass of the algorithm is shown in figure 5(a). Also shown in the figure are coloured spheres
indicating the positions in the surface unit cell of the assumed positions in our model of the
surface dimer atoms. The red spheres represent the dimer atoms from one of the orientationally
related domains, and the blue spheres dimer atoms from the other. The structure within the
(2×2) surface unit cell consisting of the combination of the surface atoms representing the two
mutually rotated domains may be termed the orientationally averaged structure. The further
averaging of the four (1 × 1) partitions of this (2 × 2) orientationally averaged structure may
be termed the orientationally and positionally averaged structure.

The electron-density map shown in figure 5(a) is essentially the unweighted difference
Fourier map of the orientationally and positionally averaged surface structure. It shows
virtually no indication of the positions of the dimer atoms. Nevertheless, after just 175 iterations
of the RECURSION algorithm, the correct orientationally and positionally averaged structure
emerges, as shown in figure 5(b). This contains regions of high electron density surrounding
the atom positions of the orientationally averaged structure, but also contains extra density
around their positionally averaged locations.

The latter, false atom positions may be eliminated by now including the data from the
superstructure rods and resuming the algorithm with the doubly averaged electron density
obtained after the previous set of iterations as a starting point. The final result after a further
325 iterations is shown in figure 5(c), where significant electron density is found only in the
vicinity of atoms of the purely orientationally averaged structure, from which it is not too
difficult to guess at the single-domain structure of the Ge(001)-(2 × 1) surface.

Progress of the algorithm for even an unknown structure could be monitored by evaluating
the x-ray R-factor:

R
(n)
X =

∑
q ||Rq + O(n)

q |2 − |Fq|2|∑
q |Fq|2 (20)

as a function of the iteration number n. The results for the two coherently scattering Ge(001)-
(2×2) domains are shown in figure 6. There is a quite steady reduction of this quantity during
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(a) (b)

(c)

Figure 5. (a) A perspective view of isosurfaces of electron density representing the starting electron
distribution {u(1)

j } (the difference Fourier estimate) after a single pass of the flow chart of figure 1
for the calligraphic structure factors defined in section 5 of the text. Note that the translucent green
isosurfaces give little indication of the positions (red and blue dots) of the atoms in a (2 × 2) unit
cell from the two mutually rotated domains. (b) Electron-density isosurfaces in the same unit cell
after inclusion of data from just the CTRs and the execution of 175 iterations of the RECURSION
algorithm described in the text. Green lobes are now seen to surround the positions of atoms from
both domains, but such isosurfaces are also seen around the positionally averaged sites in the (2×2)
unit cell. (c) Electron-density isosurfaces in the same unit cell after inclusion of data from both the
CTRs and the superstructure rods and the execution of a further 500 iterations of the RECURSION
algorithm. Green lobes are now seen to surround only the positions of atoms the two domains, thus
recovering the correct orientationally averaged structure in the (2 × 2) unit cell.

the first 175 iterations when the RECURSION algorithm acted only on the CTR data. When
the data from the superstructure rods were added, there was initially an upward spike in the
curve, followed by a reduction to a low plateau after a total of about 650 iterations.

6. Incoherently scattering domains

Now let us consider the same two mutually rotated domains as in the previous section, but now
assume that the amplitudes scattered by each of these domains add incoherently. That is, we
assume that the measured intensity for scattering vector q may be written as

|Fq|2 = 1
2 |Rq + Oq|2 + 1

2 |R′
q + O ′

q|2 (21)

where the unprimed and primed quantities refer to the two mutually rotated domains.
In this case, a different modification of the RECURSION algorithm will enable the

determination of the electron density of a single one of the (2 × 2) domains. The only
modification to the single-domain algorithm of section 4 is to replace the target amplitudes by
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Figure 6. Variation as a function of iteration number of the x-ray R-factor (defined in section 5 of
the text) to monitor the progress of the RECURSION algorithm, applied to recover the structure of
the coherently scattering, mutually rotated domains of Ge(001)-(2 × 1). Note the steady decrease
in the R-factor while the algorithm operated on just the CTR data, followed by an upward jump
when the unphased superstructure amplitudes are introduced, and a subsequent decline of the total
R-factor.

Oq
(n)=FTq{uj

(n)}{uj
(n)}

{tj
(n)}

uj
(n+1)=  tj

(n) if tj
(n)>0

0    if tj
(n)<0

n⇒n+1

tj
(n)=FT-1

j{Tq∈M
(n)+ Oq∈U

(n)}

φq
(n)=arg[Rq+Oq

(n)], ∀q∈M

Rq=Fq
Bulk Oq=Fq

Surf

Tq
(n)={2Iq-|Rq’+Oq’|2}(1/2) exp[i φq

(n)]-Rq, ∀q∈M

Figure 7. The flow chart of the RECURSION algorithm for two mutually rotated, incoherently
scattering domains. In this case, the recovered electron density {u(n)

j } is that of the surface of a
single one of the domains. For further details, see the text.

T (n)
q =

√
|Fq|2 − 1

2 |R′
q + O

′(n)
q |2 exp[φ(n)

q ] − Rq ∀q ∈ M

=
√

|Fq|2 − 1
2 |Rq′ + O

(n)
q′ |2 exp[φ(n)

q ] − Rq ∀q ∈ M
since

R′
q = Rq′ (22)

and

O ′
q = Oq′ (23)

by symmetry. The corresponding flow chart is shown in figure 7.
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(a) (b)

(c)

Figure 8. (a) A perspective view of green electron-density isosurfaces of the distribution {u(1)
j } of

the electron density from one of the two mutually rotated surface domains after a single circuit of the
flow chart of figure 7. Note the near impossibility of distinguishing the true atom positions (marked
by the red spheres) from the large number of artifacts. (b) As (a), except that the green electron-
density isosurfaces are those after the modification of the density distribution of (a) following
the execution of 300 iterations of the RECURSION algorithm with data from just the CTRs,
which contain scattering contributions from both the surface and the bulk. The isosurfaces now
indicate the positions of a spatially averaged surface structure from a single domain which has the
(incorrect) lateral periodicity of the bulk structure. (c) As (b), except that the green electron-density
isosurfaces now represent the electron distribution recovered after the inclusion of both the CTRs
and the superstructure rods in the RECURSION algorithm. The true (2 × 1) periodicity of a single
one of the surface domains is now recovered, pinpointing the locations of the surface dimer atoms
from that domain in a nominal (2 × 2) surface unit cell.

We have tested this algorithm by simulating a set of experimental intensities for equal
proportions of two mutually rotated domains of the Ge(001)-(2×2) structure that we considered
earlier by the incoherent addition formula (21) above. A set of isosurfaces of the electron
distribution {u(1)

j } after a single circuit around the flow chart of figure 7 with the inclusion
of the data of just the (even-order) CTRs is depicted in figure 8(a). The noisy image does
not allow the identification of the true atom positions marked by the red spheres. The result
after 300 iterations is displayed in figure 8(b). This appears to be consistent with the spatially
averaged structure of one of the domains. The final electron distribution after inclusion of the
odd-order (superstructure) rods and the execution of a further 100 iterations of the algorithm
is shown in figure 8(c). This is a close representation of the correct single-domain electron
density, as may be seen from the fact that the only isosurfaces surround the positions of the
corresponding dimer atoms, represented by the red dots.

Once again we may monitor the progress of the algorithm using the x-ray R-factor (20)
as a function of the iteration number n. The results for the two incoherently scattering
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Figure 9. Variation as a function of iteration number of the error-reduction algorithm of the x-ray
R-factor quantifying the agreement between the estimates of the structure factors of the entire
structure from the current estimate of the surface electron distribution and that from the model
diffraction data. Note a steady decline in the R-factor during the first 300 iterations when the
data from only the CTRs were included. This is followed by an initial upward jump when the
(unphased) superstructure data are first included, followed by a further decline to an even lower
plateau as these rods also become phased.

Ge(001)-(2 × 2) domains are shown in figure 9. There is quite a steady reduction of this
quantity during the first 300 iterations when the algorithm of figure 7 acted on just the
CTR data. When the data from the superstructure rods were added, there was initially an
upward spike in the curve, followed by a reduction to a lower plateau after a total of about
400 iterations.

7. Conclusions

In earlier papers [3, 4] we showed that for diffraction intensities arising from x-ray scattering
from a surface consisting of identical unit cells, a combination of a knowledge of the (complex)
structure factors of a known bulk structure enables a determination of the electron distribution
of the surface unit cell. This is performed by means of an iterative algorithm that finds
progressively improved phase estimates of the measured structure factors by equating them to
the phases of the sum of the complex structure factors of the bulk, and the Fourier transforms
of the current estimate of the electron distribution in the surface unit cell, which is constrained
to be positive definite. In reciprocal space, these improved phase estimates are combined with
the experimentally determined magnitudes of the structure factors, and the inverse Fourier
transforms of these complex quantities give an improved estimate of the surface electron
distribution. The iterations are repeated to convergence.

In the present paper we have shown how to adapt such an algorithm for the common case
of a surface in which more than one symmetrically related domain of the structure contributes
to the diffraction pattern. We have shown that simple (but different) modifications of the
phasing algorithm allow the recovery of the electron distributions of the surface unit cell in the
cases of both mutually coherent scattering and incoherent scattering from the domains, thus
significantly enlarging the scope of the phasing methods.
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[5] Szöke A 1993 Acta Crystallogr. A 49 853
[6] Shneerson V L, Wild D L and Saldin D K 2001 Acta Crystallogr. A 57 163
[7] Fienup J R 1978 Opt. Lett. 3 27
[8] Fienup J R 1982 Appl. Opt. 21 2758
[9] Vlieg E 2000 J. Appl. Crystallogr. 33 401
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